Research Themes

Positive Systems

Dynamic systems that exhibit non-negativity in their responses to non-negative inputs are referred to as positive systems. These systems have a wide range of applications, including pharmacology, epidemiology, biology, and communication networks. This research focuses on designing non-negative systems using geometric programming, a broader class of optimization methods, instead of the traditionally used linear programming approaches.

References
[14] C. Zhao, K. Sakurama, and M. Ogura, “Optimal toll strategy for traffic flow network: A geometric programming approach,” Under preparation, 2024.
[13] C. Zhao, B. Zhu, M. Ogura, and J. Lam, “Probability rate optimization of positive Markov jump linear systems via DC programming,” Asian Journal of Control (accepted for publication), 2024. [ DOI ]
[12] 趙成岩 and 小蔵正輝, “DC計画を用いたカーシェアリングネットワークの最適化,” システム/制御/情報, vol. 67, no. 10, pp. 427-432, 2023.
[11] C. Zhao, X. Gong, Y. Ebihara, and M. Ogura, “Impulse-to-peak optimization of positive linear systems via DC programming,” in 22nd IFAC World Congress, 2023, pp. 5544-5549. [ DOI | http ]
[10] C. Zhao, B. Zhu, M. Ogura, and J. Lam, “Parameterized synthesis of discrete-time positive linear systems: A geometric programming perspective,” IEEE Control Systems Letters, vol. 7, pp. 2551-2556, 2023. [ DOI | http ]
[9] X. Gong, M. Ogura, J. Shen, T. Huang, and Y. Cui, “Optimal epidemics policy seeking on networks-of-networks under malicious attacks by geometric programming,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 6, pp. 3845-3857, 2023. [ DOI | http ]
[8] C. Zhao and M. Ogura, “Probability rate optimization of positive Markov jump linear systems via DC programming,” 第10回計測自動制御学会制御部門マルチシンポジウム, pp. 1A6-1, 2023. [ http ]
[7] B. Zhu, J. Lam, and M. Ogura, “Log-log convexity of an optimal control problem for positive linear systems,” Automatica, vol. 146, p. 110553, 2022. [ DOI | http ]
[6] M. Ogura and C. Zhao, “DC programming for optimization of dynamic buffer networks,” 第8回計測自動制御学会制御部門マルチシンポジウム, pp. 1D1-2, 2021. [ http ]
[5] 小蔵正輝, 岸田昌子, and 林參, “大規模非負システムの幾何計画による最適設計,” 計測と制御, vol. 60, no. 1, pp. 59-64, 2021. [ DOI | http ]
[4] 八木聖太, 小蔵正輝, 岸田昌子, 木村達明, and 林和則, “Geometric programによる送信電力制御アルゴリズムのロバスト安定化,” 電子情報通信学会論文誌B, vol. J103-B, no. 12, pp. 644-651, 2020. [ DOI | http ]
[3] M. Ogura, M. Kishida, and J. Lam, “Geometric programming for optimal positive linear systems,” IEEE Transactions on Automatic Control, vol. 65, no. 11, pp. 4648-4663, 2020. [ DOI | arXiv | http ]
[2] C. Zhao, M. Ogura, and K. Sugimoto, “Stability optimization of positive semi-Markov jump linear systems via convex optimization,” SICE Journal of Control, Measurement, and System Integration, vol. 13, no. 5, pp. 233-239, 2020. [ DOI | arXiv | http ]
[1] M. Ogura and C. F. Martin, “Stability analysis of positive semi-Markovian jump linear systems with state resets,” SIAM Journal on Control and Optimization, vol. 52, pp. 1809-1831, 2014. [ DOI | arXiv | http ]

Copyright© 複雑システム科学研究室 , 2025 All Rights Reserved Powered by STINGER.